On φ-pseudo Symmetries of (LCS)n-Manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Φ–recurrent Sasakian Manifolds

The objective of the present paper is to study φ–recurrent Sasakian manifolds. AMS Mathematics Subject Classification (2000): 53C05, 53C20, 53C25

متن کامل

Geometric symmetries on Lorentzian manifolds

Lie derivatives of various geometrical and physical quantities define symmetries and conformal symmetries in general relativity. Thus we obtain motions, collineations, conformal motions and conformal collineations. These symmetries are used not only to find new solutions of Einstein’s field equations but to classify the spaces also. Different classification schemes are presented here. Relations...

متن کامل

On Concircularly Φ−recurrent Para-sasakian Manifolds

A transformation of an n-dimensional Riemannian manifold M , which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation. A concircular transformation is always a conformal transformation. Here geodesic circle means a curve in M whose first curvature is constant and second curvature is identically zero. Thus, the geometry of concircular transformat...

متن کامل

On Φ-ricci Symmetric Kenmotsu Manifolds

The present paper deals with the study of φ-Ricci symmetric Kenmotsu manifolds. An example of a three-dimensional φ-Ricci symmetric Kenmotsu manifold is constructed for illustration. AMS Mathematics Subject Classification (2000): 53C25

متن کامل

On Weak Concircular Symmetries of Kenmotsu Manifolds

The object of the present paper is to study weakly concircular symmetric and weakly concircular Ricci symmetric Kenmotsu manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyungpook mathematical journal

سال: 2013

ISSN: 1225-6951

DOI: 10.5666/kmj.2013.53.2.285